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SUMMARY

Higher order compact algorithms are developed for the numerical simulation of wave propagation by

using the concept of a discrete dispersion relation. The dispersion relation is the unique imprint of any

linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion

relation by examining the process by which locally plane waves propagate through a chosen grid. The

exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and

diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that

involve only three or five spatial grid points. These algorithms are subject to the same restrictions that

govern the use of dispersion relations in the construction of asymptotic expansions to nonlinear evolu-

tion equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3,

and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

INTRODUCTION

Numerical methods for computing dynamic phenomena, especially wave propagation, are becoming

a major focus of modem research because of the pervasive nature of unsteady flows in all areas of fluid

mechanics and the increasingly wide availability of supercomputer resources. The propagation of waves

over long distances requires precise phase accuracy. It is an unfortunate property of all finite-difference

schemes that phase resolution must be compromised over some portion of the available spectrum. In

order to correctly capture wave phenomena, the spatial and temporal order of the discretized equations

must be accurately matched to a relatively high order. Otherwise, extremely small time steps must be

taken to maintain phase resolution, which can result in the buildup of roundoff error and the inefficient

use of computational facilities.

In general, currently available algorithms for wave propagation may be placed in two major cate-

gories: Crank-Nicolson (C-N) and characteristic type. The former approach was originally developed in

reference 1 for parabolic equations and extended by others to hyperbolic problems, with mixed success.

(The use of the term Crank-Nicolson for implicit finite-difference methods applied to nonparabolic

equations follows the nomenclature adopted by Mitchell in ref. 2.) The characteristic-based method

(apparently first described in ref. 3) was developed especially for wave-like phenomena.

The C-N approach is a very successful strategy to attain high accuracy in a given computational

molecule by using implicit finite differences. This method has withstood the test of time and is clearly

the method of choice for highly dissipative systems. The early promise of using central differences for

convective systems was short-lived (ref. 4). It is now apparent that certain low order central-difference



algorithmsarenotusefulfor resolving convection-dominated flows. This class of problems is the essen-

tial feature of many practical wave problems where the ratio of the convective to diffusive terms can be

as large as 108.

Characteristic-based differencing was first presented in the explicit first-order scheme of Courant,

Issacson, and Rees in 1953 (ref. 3). This is equivalent to tracking the retrograde characteristic with a

linear interpolation between grid points. Since then, a wide variety of these upwind algorithms have

been developed. A major breakthrough in the analysis of upwind methods was the development of

so-called Godunov schemes. These algorithms model the equations of convective gas dynamics with a

special treatment of the discontinuity surfaces by solving a sequence of Riemann problems (called the

"breakdown formulas" in ref. 5) and imposing a special monotonic criterion on the wave. This concept

was exploited in a large number of modem unsteady algorithms introduced in the early 1980s. A review

article concerning these methods as applied to inviscid gas dynamics was recently written by Roe

(ref. 6). These algorithms seem to be the most evolved versions of the simple upwind schemes. In prac-

tical applications they can be very complicated for waves traveling in multiple directions and for the

inclusion of viscous effects.

This paper describes a different approach for generating finite-difference approximations to

convection-diffusion problems. The response of the operator to sinusoidal wave trains is considered,

rather than attempting to deal with local characteristics or Taylor-series expansions. The goal of the

method is to develop the best possible approximation to the space-time differential operator, with the

constraint that the system of discretized algebraic equations maintain a specified minimal bandwidth.

The measure of the "best possible approximation" is that the discrete transfer function (also called the

amplification factor) that advances the solution at each time step has minimal dissipative and dispersive

error. The key to generating the optimal finite-difference equation is to carefully examine the dispersion

relation, which is an intrinsic property of every differential operator. In particular, the linearized theory

of dispersive waves has been developed to a very high order (refs. 7 and 8). With this theory, algorithms

are developed using the analogy between asymptotic dispersive-wave propagation and local plane-wave

propagation through a discrete mesh.

In the following sections, the discrete dispersion relation (DDR) is defined and applied to some well

known algorithms. The DDR also suggests an efficient time-splitting to separate convection and diffu-

sion in one dimension, or even to split multidimensional problems The important role of the data band-

width is illustrated by the propagation of pulses with small diffusion. The propagation of a step function

is compared with the monotone-preserving scheme of Leonard (ref. 9), where it is shown that the

"wiggles" can be effectively suppressed with small values of physical diffusion in the differential

operator.

The method described here is contrasted with another class of algorithms called compact schemes

(or Hermitian methods in ref. 10). These methods are based on the fact that a differential equation is

satisfied at each of a number of mesh points in the chosen computational molecule, thus relating the

dependent variable and its derivatives at these spatial mesh points. Such methods have been used with
considerable success for convection-diffusion problems. The new method attempts to generate similar

compact schemes by exploiting the differential operator in space-time rather than by treating only the

spatial response.
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A fourth-orderschemeis derivedthatis exact for values of the Courant number (Cn) equal to 1 and

2, and an eighth-order scheme that is exact for Cn equals 1, 2, 3, and 4. These should be very efficient

for many wave problems, since no decision regarding the local velocity direction need be made. The fact

that only three (or five) mesh points are needed for the fourth- (or eighth-) order schemes should make

them very useful. In theory, although the method is neutrally stable for all values of Cn, there is a prac-

tical limit to this parameter because of severe wave distortion at short wavelengths, due to increasingly

large dispersive errors.

Recently, a series of higher order algorithms of the C-N type have been developed by Noye and

co-workers (refs. 11 and 12). They used the method of modified partial differential equations (ref. 11)

and Pade approximations (ref. 12), following the ideas presented by Young in the appendix of refer-

ence 13. The developed schemes depend on a variety of parameters, and Noye has also derived an

"optimal" fourth-order scheme for convection that is the same as the one developed here using the DDR.
In reference 12 a seventh-order scheme is derived, based on the Pade method.

In the next section, the concept of the DDR associated with the convection-diffusion operator is

derived and compared with other approaches. Although Fourier methods have been used extensively in

the past to examine the stability and dispersion of numerical approximations, they have not been used as

the primary tool to derive computational molecules. Later sections will compare results for a number of

model problems regarding the convection and diffusion of pulses and steps. Finally, a description of

possible future work will be presented.

THE DISCRETE DISPERSION RELATION

The basis for developing high fidelity finite-difference equations is to examine the manner in which

the locally linearized equations propagate plane waves. The equation satisfied by the wave number

determines a dispersion relation at the chosen time step. This dispersion relation may vary from point to

point, and at each time step, for systems with time-dependent coefficients. The associated difference

equation is found from a local Maclaurin series which relates the exact dispersion relation to the

assumed approximation at the desired order.

First, consider the prototype one-dimensional convection equation

3.--_-+ Ox=0 (1)

A plane-wave solution of the form

u(x, t) = A e i(t°t+kx) (2)
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is substitutedin equation(1) to obtainthesimpledispersionrelation

o_+Vk = 0 (3)

If x is a discrete time increment, the ratio of the exact solution at time nx and (n+l)x at the point x is

un+l ei[t°(n+l)z+kx] e i°g (4)
u n ei(_x +kx)

which does not depend on x and is independent of n. (This ratio is homogeneous in space and station-

ary in time.) If the spatial dimension is discretized with a uniform step size h, the dispersion relation in

equation (3) is used to relate the time step to the spatial scale, using the Courant number (Cn = Vx/h) as

the scaling parameter. The final result is

un+l
= _l = e -iCn kh (5)

U n

Equation (5) relates the transfer of information to the next time step at a given point in terms of the

spatial scales. The symbol [3 represents the exact amplification factor on a finite grid superimposed on

the space of independent variables. This spatial-temporal coupling is embedded in the dispersion rela-

tion. In this extremely simple example, the relation is purely linear with the Cn the constant of

proportionality.

Commonly used backward and central finite-difference schemes on a uniform mesh can also be

expressed as amplification factors. These are approximate transfer functions that relate to equation (5)

only in terms of matching its Maclaurin series in kh to a given order. Amplification factors for two well
known schemes are

un+l

u n

- (1 - Cn) + Cn e -ikh--

(6)

u n+l 1 _ 1Cn(1 _ Cn)eikh- (1 - Cn 2) + _Cn(1 + Cn)e -ikh
U

The fh'st of equation (6) is the Courant Issacson and Rees method of reference 3, while the latter is the

Lax-Wendroff scheme. The mesh can support all wavelengths up to 2h, so kh must vary between 0

and n.
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Themostgeneralthree-spatial-point/two-time-levelstencilis

a n+l n+l. n+l b0u_+ n n0uj + aluj_1+ a2uj+l = blUj_1+ b2uj+l (7)

The dependent variable at the discrete time n + 1 and centered at discrete point j is expressed in

terms of its nearest neighbors at times n and n + 1. The fundamental question is not how to determine

the coefficients from a predetermined spatial/temporal finite-difference formula, but how to use the

available constants to best approximate the underlying partial-differential operator, in this case, equa-

tion (1). A large number of implicit/explicit and/or biased/unbiased schemes can be constructed using
the available constants.

The computational molecule described by equation (7) has a local influence property that is an

analog to asymptotic wave theory. Thus, in reference 14 a wavetrain is defined as "a system of almost

sinusoidal propagating waves with a recognizable dominant local frequency and wave number." This

wave train may be propagating in a nonhomogeneous medium, but the local wave properties depend on

the dispersion relation, which is defined in terms of the locally constant coefficients of the operator. The

same statement may be made with respect to the six-point computational molecule in equation (7) where

a "test wave" of local frequency to and wave number k propagates through the six-point computational

molecule. Determining the coefficients now becomes a matter of mapping the dispersion relation--the

unique imprint of the differential operator--onto the grid, and using this relation to generate as accurate

an amplification factor as possible.

Let a locally plane wave of the form ei°_t+ikx propagate through the mesh. The amplitudes are

related by equation (7):

eit°(n+l)X(a0 + a 1 e -ikh + a 2 e ikh) = ei°mx(b0 + b 1 e -ikh + b 2 e ikh) (8)

The amplification factor 13'is the ratio of the solution at subsequent time steps:

I_,= e i_ = b0 + b 1 e -ikh + b 2 e ikh
a0+a 1 e-ikh + a2 e ikh

(9)

The exact ratio is given by 13 in equation (5). It lies on the unit circle in the complex plane for all

values of Cn and kh, since the underlying operator is dissipation-free. The approximate operator in

equation (9) can be made free of dissipation if the numerator and denominator are complex conjugates to

one another. This condition is strictly enforced if a0 = b0,, al = b2, and a2 = bl. The expression for 13'

now contains three constants, of which only two are independent. The only error that remains is that due



to phasedispersion.Takingaccount of the fact that the numerator and denominator are complex conju-

gates of the form (A + iB)/(A - iB), a simple form for the argument of Num[13'] is

B
tan [arg(Num[13' ])] = _- (10)

From equation(4), the exact value of the argument is

(11)

The factor 1/2 is used because only half the phase shift is attributed to the numerator of the discrete

amplification factor.

The available constants can be used to match these equations up to order (kh) 4. The Maclaurin series

is derived in the appendix where the coefficients are specified as a function of Cn. The final formula is

1__ 2xun+l 1 ,,, n+l 1 ,,, n+l(Cn- 1)(Cn- ) j-I - (Cn- 2)(Cn + z)uj + _-(Cn + 1)(Cn + z)uj+ 1

1 2 n 6(Cn 2)(Ca+ 1-_(Cn 1)(Cn n=-_(Cn+l)(Cn+ )uj_ 1- - 2)u_+ - -2)Uj+l (12)

This is a fourth-order accurate approximation to equation (1) where the order is defined as matching

the Maclaurin series to the indicated number of terms. This is the formula derived by Noye in refer-

ence 11, using the modified equation approach. His method used weighed finite-difference formulas in

both space and time to obtain higher order schemes. His "optimum" scheme is the one shown in equa-

tion (12), which is the unique result of approximating the DDR with a three-spatial-point/two-time-level

scheme.

Exactly the same procedure can be used to generate higher order dissipation-free formulas. If one is

willing to accept wider bandwidths, arbitrarily high orders can be generated. Such formulas may be

considered high fidelity versions of the C-N method. For example, let a locally plane wave propagate

through the five-spatial-point/two-time-level stencil. The resulting eighth-order scheme (also derived in

the appendix) is
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1 (Cn - 1)(Cn - 2)(Cn- 3)(Cn - 4")uj_2 _ __0(Cn _4)(Cn _3)(Cnn+l 1 2)(Cn + 4xun+l1680 - ) j-1

1 1n+l .. n+l

(Cn - 4)(Cn + 2)(Cn + 3)(Cn + 4)u j+ 1+ 2--g-0(Cn - 4)(Cn - 3)(Cn + 3)(Cn + ,_)uj 420

1 -. n+l
+ 1--ffffO(Cn + 1)(Cn + 2)(Cn + 3)(Cn + ,,)u j+ 2

-1@80 4 n 1- (Cn + 1)(Cn + 2)(Cn + 3)(Cn + )uj_2 --_-0(Cn - 4)(Cn + 2)(Cn + 3)(Cn + 4)U__l

1 _ n+-2---fro(Cn - 4)(Cn - 3)(Cn + 3)(Cn + 4)u_ - (Cn - 4)(Cn - 3)(Cn - 2)(Cn + 4)u j+ 1

1
l)uj+2+ 1-6-if0 (Cn - 4)(Cn - 3)(Cn - 2)(Cn - n (13)

A direct extension of the second-order C-N scheme from parabolic to convective equations can be

obtained in a simple approximation to equation (7) with b0 = a0 = 1 and bl = -b2 = -al = a2. This

formula is well known and is derived in another manner by Mitchell (ref. 2, p. 167).

The local order of accuracy of a given finite-difference approximation is defined as the power of the

first nonvanishing term in a Taylor series expansion of the difference between the exact_and discrete

operators. Since the underlying dispersion relation itself represents the dominant term in an asymptotic

expansion for nonuniform or nonlinear wave propagation, the formulas given above may not have the

same local order of accuracy with respect to the differential operator. In fact, it can be Shown _at the

schemes are of fourth- or eighth-order accuracy only if the underlying equation has constant coefficients.

This will be illustrated with fourth-order method in equation (12).

n

Expand each of the terms in equation (7) in a Taylor series about the point uj with spatial and tem-

poral increments h and x. Using the coefficients in equation (12) and after some complicated algebra,
the final form is

A(u) 1_, 1ut + Vux = ---_-- _-xtutt + Vuxt)- x2(4uttt + 6Vuxtt + 2V2uxxt)

1 3 1 2
--_-_- % (utttt + 2Vuxttt + V2uxxtt) - _ h (Uxx t + Vuxxx)

-1-_ h2X(Uxxtt + Vuxxxt) + O(@, h 4, '_2h2) (14)

where

n+l. a u n+l - n+l _ .n n nA(u) = a0u j * 1 j-1 + _t2Uj+l - o0uj - blUj-1- b2uj+l
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If theconvectionvelocity V is constantall of theerror termsabovevanishandthediscreteoperator
is a fourth-orderaccuratespace-timeapproximationto boththedispersionrelationandthedifferential
equation.If V is spatiallyvariable,only thetimederivativescanbe factoredandthelocal orderof
accuracydropsto secondorder.Finally, if V is variablein spaceandtime, the localorderof accuracy
dropsto first order.Thisbehavioris consistentwith theconceptof adispersionrelationasanexactrep-
resentationfor solutionsof partialdifferentialequationsof simpleform (constantcoefficients),butonly
astheleadingtermof anasymptoticseriesfor equationsof morecomplexstructure.In thepast,success-
ful useof thecontinuousdispersionrelationto explainmajorphysicalfeaturesof wavepropagation
indicatesthattheuseof theDDR maybeusefulin selectedsimulations.For example,thepropagationof
acousticor electromagneticwavesusuallyinvolvessystemswith constantcoefficients,andtheanalysis
of linearstabilityin fluids involveswavemotiongovernedby systemswith spatiallyvariablecoeffi-
cients.In suchcases,theresolutionof thenumericalsolutionmaydependmoreon thestabilityproper-
ties(thatis theamplificationfactor)of thediscreteoperatorthanon its rateof convergenceasreflected
by thelocal orderof accuracy.

Now considertheeffectof dissipationusingthesecond-modeldifferentialoperator.

(15)

Solutionsin form of wavetrains u = A ei(wt+kx) yieldsthedispersionrelationfor wavesin adiffu-
sivemedium

ito + iVk + vk2= 0 (16)

where V andv arerealconstants.Thisequationrelatestherealwavenumber k to theradianfrequency
to in terms of the real parameters V and v. A nondimensional form of equation (15) in terms of the

mesh parameters is

cox = -Cn kh + iDn(kh) 2 (17)

where the Diffusion number, Dn, is defined as vx/h 2. Following equation (5), the exact dispersion rela-

tion is

=eio=oiC hOn  ,2= iC )(eOn kh,2) (18)

which can be split into the product of convective and diffusive terms, as shown. Since the dispersion

relation is derived from a differential operator with locally constant coefficients (following its use in

wave theory), it will always support waves of exponential form. Furthermore, the number of terms in the

exponent--the second exponential in equation (18)---will always sum to the number of space-derivative



termsin theoperator.Thus,thedispersionrelationcanalwaysbebrokeninto aproductof transferfunc-
tions;in thiscase,oneamplificationfactorfor convectionandonefor diffusion.DDRs for convection
havealreadybeenconsidered.Thediscretetransferfunctionfor dissipationis not socritical for wave
processes.It is thenatureof dissipativeprocessesalwaysto evolvetowardthelow endof thewave-

number spectrum. If the usual C-N algorithm is used as the dissipative discrete transfer function, a

complete algorithm for convection and diffusion is obtained.

The convective DDR generates an intermediate solution that is further processed by the diffusive

DDR to obtain the complete solution at the next time level. Boundary conditions for the intermediate

solution are of the convective type, and are almost always obvious for waves in infinite media. The same

arguments can be used to generate a sequence of transfer functions to treat other spatial directions, or

even terms without derivatives (such as arise in the Helmholtz equation). The use of the dispersion rela-

tion is the unifying principle in generating approximate solutions to complex systems as a sequence of

simpler operators.

EXAMPLES OF THE DISCRETE DISPERSION RELATION

The DDR has been shown to be a useful tool for generating approximations to differential operators,

and for separating convective and diffusive effects at the algorithmic level. In this section some repre-

sentative algorithms will be presented and contrasted with the fourth- and eighth-order convection meth-

ods derived in the previous section. It is found that most algorithms do not perform very well for Cn

greater than one. Even if they are stable, they exhibit very large phase dispersions that make them less

useful for unsteady flow analysis.

Results are presented for a range of Cn greater than unity. Many commonly used explicit methods

are unstable for Cn > 1, but for comparative purposes three available algorithms are considered. Fig-

ure 1 shows the magnitude and phase characteristics of the amplification factor for a first-order upwind

scheme (ref. 3 ), a second-order Lax-Wendroff scheme, and a third-order backward scheme due to

Leonard (ref. 15). Curves are compared with the theoretical dispersion relation from equation (5) for Cn

from 0.5 to 3.0 in steps of 0.5. Notwithstanding the fact that that all methods are unstable for Cn > 1,

attention is focused on the phase. The first- and third-order methods have the interesting property that

the phase response is correct for Cn = 0.5. All methods are exact for Cn = 1.0 in both amplitude and

phase, and the third-order method is exact for Cn = 2. The second-order method has the distinct advan-

tage that no decision regarding the sign of the velocity is needed, and only a three-point stencil is

needed.

Figure 2(a) shows the same quantities for the fourth- and eighth-order methods. The amplitude is

unity for all values of Cn and the fourth-order method is exact for Cn = 1 and 2. Figure 2(b) represents

the dispersion characteristics for the eighth-order method over a larger range of Cn. It is exact for

Cn= 1, 2, 3, and 4.

This increased accuracy does not depend on an ever-widening computational molecule. The fourth-

order method uses the same three-point stencil as the Lax-Wendroff method and the eighth-order method

uses the same five-point mesh as Leonard's third-order algorithm. The increased accuracy is achieved by
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examiningthedifferentialoperator(in terms of its dispersion relation), rather than the space and time

derivatives separately.

A measure of the phase accuracy is the quantity 0d, the departure wave number as defined by the

value of 0 where the DDR and the exact dispersion relation first diverge. Since the numerical phase at

kh = rc must always be zero or an integer (see fig. 2), 0d must oscillate as Cn increases, with a maxi-

mum value of _ when the algorithm is exact. For the eighth-order scheme, 0d,min is about 0.7n and

decreases rapidly for Cn > 4. In contrast, the phase departure for the fourth-order scheme has a mini-

mum of about 0.5_ and decreases rapidly for Cn > 2. The important factor of phase fidelity is not

always appreciated, and many common algorithms depend on numerical dissipation ("artificial viscos-

ity") to avoid oscillations. Such algorithms that claim no limits on the Cn based on stability considera-

tions must be carefully examined to ensure that the numerical dissipation not only suppresses spurious

oscillations, but does not damp out important high-wave-number physical phenomena.

Another way of comparing phase error is shown in figure 3. Curves of phase error, defined as the

ratio of the approximate to the exact phase shift, are drawn on a polar diagram with the phase kh as

polar angle. The unit half-circle defines the locus of perfect phase resolution. A separate plot is shown

for three values of Cn: 0.2, 0.8, and 4.0. Each plot shows the phase resolution for three dissipation-free

algorithms: the second-order method reported in Mitchell (ref. 2), and the fourth- and eighth-order

methods described above. The higher order algorithms follow the unit half-circle for a much greater

length of arc, indicating higher phase fidelity. (For reference, the ray corresponding to kh = n/2 corre-

sponds to a disturbance wavelength of 4h.) The plot for Cn = 4 is one of the special cases where the

eighth-order method is an exact analog of the differential operator (when V = constant). The phase

resolution for the other methods is very poor.

The effect of phase fidelity on the numerical simulation of convection operators, and the use of

physical diffusion to supresses oscillations, will be examined in the following section where the resolu-

tion of pulse and step-function wave motion will be examined.

COMPUTATIONAL EXAMPLES

The following examples are based on numerical solutions to equation (15) using the finite-difference

approximations given by equations (12) and (13). Both examples are meant to illustrate the wave-

capturing capabilities of the method and the importance of phase accuracy. The examples deal with

propagation in an infinite medium and, where necessary, periodic boundary conditions are used.

A feature of numerical wave propagation with Cn greater than one is that the system of algebraic

equations may become ill-conditioned or the coefficient matrix may even be singular. In most cases

periodic boundary conditions assure diagonal dominance, and this was found to be true for the systems

generated by equations (12) and (13).
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Example 1. Pulse Propagation in an Infinite Medium

The fh-st example will deal with the propagation of a dissipative pulse. This problem illustrates the

critical role that the amplification factor plays as a filter through which the solution is processed at each

time step. It will be demonstrated that the bandwidth of the data is the main parameter governing the

accuracy of the simulation. A test pulse with the largest possible bandwidth is a Dirac delta function, an

unattainable ideal in numerical simulations. The nonlimiting form of the Dirac function (ref. 16) is an

exponential function of the form

u(x, t) = _ e -nx2 (19)

where n = td/4(t - tr), X = x - Xr -t]tc and x,t are points in space and time. The Dirac delta function

would correspond to the limit n _ oo.

The available physical parameters are Xr the initial location of the pulse; tr the time at which the

pulse is singular (tr is negative); tc the convective time scale; and td the diffusive time scale. (With

respect to equation (15) and a length scale L, tc and td are L/V and L2/v, respectively.) A wave with a

large ratio of td/tc would represent a convection-dominated flow. (The ratio td/tc is the Reynolds

number.) Very small values of the diffusive time scale would represent a highly dissipative wave, and

large values of tc would correspond to a sharp initial pulse with a rich frequency content.

Equation (19) has the agreeable property that its Fourier transform with respect to X retains a simi-

lar functional form. A numerical solution to equation (15) is generated using u(x,0) as initial conditions.

The two new parameters that arise from the discretization are Cn and Dn, as described previously.

Results will be shown for both the fourth- and eighth-order convection algorithms.

A comparison for a relatively narrow banded pulse is shown in figure 4. The pulse has convected

without a change in form, as shown in figure 4(a). Figure 4(b) presents the magnitude of the finite

Fourier transform on an abscissa that is matched to the quantity kh/_. The bandwidth of the pulse is

approximately 0.6n. Figures 4(c) and 4(d) show the phase characteristics of the DDR as compared to the

exact phase (dashed). Since the phase departure wave number is located well above the pulse bandwidth,

as shown in figure 4(b), both the fourth- and eighth-order algorithms give similar predictions. The two

computed waveforms are indistinguishable from the exact theoretical values, all three of which are

shown superimposed as pulse B in figure 4(a).

Figure 5 shows a similar computation for a large increase in the Cn to 4.78. This value corresponds

to almost 2.5 revolutions of the DDR about the origin in the complex plane and is a relatively severe test

of the phase resolution. The predicted final pulse waveform for the fourth- and eighth-order schemes are

shown in figure 5(a). The fourth-order algorithm exhibits a strong lagging oscillation while the eighth-

order method still correctly tracks the pulse. Since the differential operator, as well as the DDR, is

dissipation-free at each time step, the magnitude of the amplitude spectra as shown in figure 5(b) are

matched for both schemes, even though the phase of the fourth-order method does not accurately span

the spectrum of the disturbance. What happens is that the real and imaginary components of the fourth-

order spectrum have been severely redistributed above 0d. This is shown in figure 6, which compares
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the real and imaginary parts of the spectrum with the exact values. The harmonic content of the compu-

tation (solid line) leads the the exact value (dashed line) for those wave numbers greater than 0a. Thus,

the time-domain pulse shows a severe phase redistribution which results in a train of lagging "wiggles."

This result illustrates the strong problem-sensitive nature of the finite-difference formulation. In

some applications, it may be possible to capture the correct partition of energy (represented by the spec-

tral magnitude) in wave number space, even though significant phase errors occur. Other applications,

such as acoustic wave propagation, require accurate phase tracking throughout the computation.

The next result shows the case where the spectral bandwidth is increased by choosing a sharper

initial pulse--the value of n in equation (19) goes from 5,000 to 10,000. A series of calculations that

include dissipation are shown in figure 7. These solutions are obtained in the manner described in the

previous section, where the convective and diffusive terms are separately modeled with individual dis-

crete dispersion relations, each having its own finite-difference formulation. The solution is obtained as

a two-step process. The exact solution is shown as a dashed line and is almost coincident with the com-

puted solution that is shown as connected points. Finally, figure 8 shows the DDR and magnitude for the

intermediate value of Dn. The slight dissipation affects the amplitude of the pulse and is reflected in a

spectrum that evolves to lower wave numbers. The damping is not quite sufficient to supress the lagging

oscillations shown in figure 7 (middle panel).

In this simple first example, the spectrum was fixed by the initial data. The next case will show the

much more severe test when a step function must propagate through the mesh.

Example 2. Propagation of a Unit Step Function

The previous section has indicated how the bandwidth and dissipative properties of the DDR can be

tailored to correctly resolve a band-limited wave. Such flexibility is not possible in the general case, and

an extreme example is the propagation of a finite discontinuity. A simple step function contains impor-

tant phase and amplitude information at all wavelengths. Unlike the Fourier transform of the Heaviside

Step Function in an infinite domain, the finite Fourier series is more complicated.

f(x)= x0+2_ sin(n_x0)c°s[2n_(x- x0 /2)]n

n=l

(20)

which represents

f(x) = 1

f(x) = 0

f(x + 1) = f(x)

0<x<x 0

x0<x<l

12



Theharmonicamplitudesdecayas l/n, which is not fastenoughto neglecthigherharmonics.In
addition,thepowerspectrumhasaregularprogressionof zerosatthenodesof thesinefunction,which
resultsin ahighly regularseriesof hills andvalleys.This featureof thespectrum,which is typical of
propagatingdiscontinuities,mustbevery well resolvedby theDDR at all wavelengthsin orderto havea
highfidelity simulation.Thisharmonicrichnessmakesthe stepfunction anidealmodelwith whichto
studytheperformanceof numericalalgorithms.Leonard(ref. 9) hasrecentlypublishedadetailedstudy
of thepropagationof astepfunction asgovernedby themodelconvectionequation(1). In this section,
theconvectionof a stepwill becomparedwith Leonard'sresults.

Therelativedispersionof second-,fourth-,andeighth-orderschemesareshownin figure 9 for a Cn
of 0.5.Directly abovethesecurvesis themagnitudespectrumfor astepfunctionfrom equation(20)on
theunit interval.(Notethat a logarithmicscaleis now usedfor theordinate.)In orderto propagatethe
stepwith highfidelity, thephaseshift at eachwavenumbermustincreaselinearly, asshownin the
dashedline. Finitedifferenceformulasareincapableof suchfidelity, sincethephaseshift at kh = _ is
constrainedto bean integer(in thiscase,zero).For thisreason,thestepis alwaysdistortedandwiggles
alwaysappear.Theamplitudeanddominantfrequencyof theoscillation,however,canbecontrolled
with higherorderschemes.Figure 10showsastepfunctionstartingfrom x0 = 0.22 after45hintervals
for Cn= 0.5.As theorderof theunderlyingalgorithmincreases,theamplitudeof thewigglesdecrease
andtheirdominantfrequencyincreases.Thetraditionalmethodof controllingthisnumericalartifactis
to useaquantitycalledthe"artificial viscosity."In upwindschemes,evenwith forms of higherorder,
this artificial viscosityis built into thealgorithm.Thisyieldssmoothersolutions,but mayresult in unac-
ceptablesmoothingin somecases.

In thecurrentexample,physicaldiffusionasit appearsin equation(16) is usedto inducejust enough
dampingto suppresstheoscillations.This approachhastheadvantagethata quantitativelower limit of
thephysicalviscositymaybefoundandusedto assessthepracticalityof aparticularalgorithm.The
effectof a smallamountof physicalviscosityis shownin figure 11for thefourth-orderschemeandin
figure 12for theeighth-orderscheme.

Thesefiguresshowthathigherorderschemesrequiresmallerdiffusion numbersto suppressoscilla-
tions.This increasesthepossibilityfor highdefinition solutionswithin availablemeshandtime-step
constraints.Thetrade-offamongtheequationbandwidth,algorithmcomplexity,andavailablestorage
mustdependon theparticularphysicalproblem.

Theeffectof diffusionon sharpeningupthepulsesis shownin theamplitudespectrain figure 13for
theeighth-orderscheme.Thediffusive factorin theDDR smoothsout thehighwavenumberasindi-
catedin thefigure.Thepredominantwavelengthof theoscillationfor theundampedwaveis evident
from themismatchbetweenthehills andvalleysfrom theexactspectrum(dottedline) andthecomputed
spectrum(dashedline). Themostseveremismatchis at thedeparturewavenumber 0d,asshownin fig-
ure9. If sufficientdampingis includedtojust cancelout thiscritical mismatch,ahighresolutionsimula-
tioncanbeachieved.Too muchdampingwill detunethesimulation,resultingin anover-smootheddis-
continuity,asis achievedwith first-orderupwinding.

A summarychartof thestepfunctionresultsis shownin figure 14.This figure depicts the error as

abscissa and the the variation of the error (wiggles) as ordinate. The region to the lower left is most

desirable, the region to the lower right is the smoothed upwind type of solution, and the solution along

13



thediagonalis the"wiggly" central-differencesolution.Theopensymbolsincludeawide varietyof
methodstakenfrom reference9. Theyincludeupwindschemes,centralschemes,andGodunovschemes.
Thecurrentcalculationsareshownasfilled symbolswith theeighth-orderschemeflagged.Thevariable
quantityis thediffusionnumberwhichchangesthecharacterof thesolutionfrom central-differencetype
to Godunovtypeto classicalupwindtype.For eachvalueof the Cn, theoptimal Dn is different.This
optimumis muchsmallerfor theeighth-ordermethod.This figure showsthatwith a suitablychosen
Dn, basedon thegivenviscositycoefficient,highly accuratenonoscillatorysimulationsmaybe
obtained.

CONCLUSIONS

A new method for generating difference equations approximating partial differential equations has

been developed. The method is based on the use of a DDR approximation to the amplification factor

that transforms the amplitude and phase information embedded in the differential operator to a finite-

difference algorithm. While such difference equations could be derived using conventional methods, the

use of the DDR simplified the process considerably. The difference equations are of the same order of

accuracy as the dispersion relation associated with the differential operator, and are of high local order

only if the coefficients are constant.

The fourth-order method is exact for Cn of 1 and 2 and the eighth-order method is exact for Cn of

1, 2, 3, and 4. The convection algorithms possess no dissipation and the only remaining issue is the

phase shift due to dispersion. For problems dominated by phase accuracy, values of Cn greater than

about 2 (for the fourth-order method) or 4 (for the eighth-order method) cause unacceptable phase dis-

tortion. More complex algorithms based on these concepts should be useful for such problems as acou-

stic wave diffraction, long range wave propagation through the atmosphere, the evolution of weakly

nonlinear waves, or studies of flow stability caused by propagating waves.

14



Appendix

This Appendix uses the symbolic algebra program Mathematica to derive

the coefficients for the discrete dispersion relation (DDR) corresponding to

fourth and eighth order convection.

1. Fourth order convection.

The following statements set up the series solution after initiating files and

declaring variables.

<<ReIm. m

{Re, Im}

<<Trigonometry. m

kh /: RealQ[kh]=True;b0 /: RealQ[b0]=True;

bl /: RealQ[bl]=True; b2 /: RealQ[b2]=True;

Set up the expression for the amplification factor in eq (9) and its argument

in eq (10)

betap = (b0+bl Exp[-I kh] +b2 Exp[ I kh])/

(b0+b2 Exp[-I kh] +bl Exp[ I kh])

I kh

bl + E b2

-I kh

b0 + E

I kh

b0 + E

-I kh

bl + E b2

A=Re [ComplexToTrig [Numerator [betap] ] ] ;

B=Im [ComplexToTrig [Numerator [betap] ] ] ;

Tanarg = B/A

bl Sin[-kh] + b2 Sin[kh]

b0 + bl Cos[-kh] + b2 Cos[kh]

Generate a Maclaurin series to fourth order with the constraint shown. Note

that only odd powers appear.

15



sl=Series[Tanarg,{kh,0,4}] /.b0+bl+b2->!

bl b2 -bl b2

(-bl + b2) kh + ( (-bl + b2) (---

6 6 2 2

3 5

- --)) kh + O[kh]

Generate the Maclaurin series for the exact dispersion relation in eq(ll).

s2=Series [Tan [- Cn kh/2],(kh, 0,4}]

3 3

Cn kh- (Cn kh) 5

+ 0 [kh]

2 24

Match the coefficients of the first and third powers and solve for bl and b2.

Coefficient [Normal [sl], kh] -

Coefficient [Normal [s2], kh] _--0

Cn-

bl +b2 ==0

2

Coefficient [Normal [sl], kh^3] -

Coefficient [Normal [s2], kh^3] ==0

3

Cn bl b2 -bl

--- + (-bl + b2) (--

24 6 6 2

Solve[{%,%%}, {bl,b2}]

b2

) == 0

2 2

2 + 3 Cn + Cn 2 - 3 Cn + Cn

{{bl -> , b2 -> }}

12 12

Clean up the expressions for bl; b2 and solve for b0 from the constraint

t=_[[1]]

2

2 + 3 Cn + Cn

{bl -> ..........

12

bl /. t[[l]];

2

2 - 3 Cn + Cn

, b2-> }

12

16



bl=%

2

2 + 3 Cn + Cn

12

b2 /. t[[2]];

b2=%

2

2 - 3 Cn + Cn

12

b0=Factor [Simplify [l-bl-b2] ]

-((-2 + Cn) (2 + Cn))

6

bl=Factor [bl ] --

(i + Cn) (2 + Cn)

12

b2=Factor [b2 ]

(-2 + Cn) (-i + Cn)

12

Use these values of b0, bl, and b2 to form the 3-space-point/2-time-point

stencil in eq (12)

2. Eighth order convection.

Follow exactly the same procedure as above, but include more points (and

unknowns) in the DDR.

b0=.;bl=.;b2=.;

kh /: RealQ[kh]=True;b0 /: RealQ[b0]=True

bl /: RealQ[bl]=True; b2 /: RealQ[b2]=True;

b3 /: RealQ[b3]=True; b4 /: RealQ[b4]=True;

17



betap= (b0+bl*Exp [-I kh] +b2*Exp[! kh] +b3*Exp [-2 _ kh]

+b4*Exp[2 I kh])/(b0+b2*Exp[-I kh]+bl*Exp[I kh]

+b4*Exp[-2 I kh]+b3*Exp[2 I kh])

-I kh I kh -2 I kh 2 I kh

b0 + E bl + E b2 + E b3 + E b4

I kh -I kh 2 I kh -2 I kh

b0 + E bl + E b2 + E b3 + E b4

A=Re[ComplexToTrig[Numerator[betap]]];

B=Im[ComplexToTrig[Numerator[betap]]];

tanarg= B/A

b3 $in[-2 kh] + bl Sin[-kh] + b2 Sin[kh] + b4 Sin[2 kh]

b0 + b3 Cos[-2 kh] + bl Cos[-kh] + b2 Cos[kh] + b4 Cos [2 kh]

Generate a Maclaurin series to eighth order with the constraint shown. The

complete expression is suppressed for clarity. Only odd powers of kh will

appear.

sl=Series[tanarg, {kh, 0,8}] /. b0+b!+b2+b3+b4->l;

Generate the eighth order Maclaurin series from eq (11).

s2=Series[Tan[- Cn kh/2], {kh,0,8)]

3 3 5 5 7

-(Cn kh) Cn kh Cn kh 17 Cn

2 24 240 40320

7

kh 9

+ O [kh]

Match the coefficients of the first, third, fifth, and seventh powers and solve

for b l, b2, b3, and b4

Coefficient [Normal [sl], kh] -

Coefficient [Normal [s2], kh] --_-0

Cn

-- - bl + b2 - 2 b3 + 2 b4 == 0

2

18



Coefficient [Normal [sl], kh^3] -

Coefficient [Normal [s2], kh^3] _--0

3

Cn bl b2 4 b3 4 b4

+ + -

24 6 6 3 3

(-bl + b2 - 2 b3 + 2 b4)

Coefficient [Normal [sl], khA5] -

Coefficient [Normal [s2], kh^5] ==0

5

Cn bl b2 4 b3 4 b4

+ + +

240 120 120 15 15

-bl b2

(

2 2

2 b3 - 2 b4) == 0

-b I b2

((--

2 2

2 b3 - 2 b4)

bl b2 2 b3 2 b4

_ (__ + -- + + .... ))

24 24 3 3

(-bl + b2 - 2 b3 + 2 b4) -

-bl b2

( 2 b3 - 2 b4)

2 2

bl b2

(- +

6 6

4 b3 4 b4

-) == 0

3 3
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Coefficient [Normal [sl], kh^7] -

Coefficient [Normal [s2], kh*7]---0

7

17 Cn bl b2 8 b3 8 b4

+ ..... +

40320 5040 5040 315 315

-bl b2 4 b3

(-(-( ....

720 720 45

4 b4

.... ) +

45

-bl b2

( 2 b3 - 2 b4)

2 2

bl b2 2 b3 2 b4

(-- + -- + +

24 24 3 3

.... )) +

-bl b2

((

2 2

2 b3 - 2 b4)

2

bl b2 2 b3 2 b4

(-- + -- + +

24 24 3 3

.... ))

-bl b2

2 2

2 b3 - 2 b4))

(-bl + b2 - 2 b3 + 2 b4) -

-bl b2 -bl

(--- 2 b3 - 2 b4) (--- +

2 2 120

b2 4 b3 4 b4

+ .... ) +

120 15 15

-bl b2 2

(( 2 b3 - 2 b4)

2 2

bl b2 2 b3 2 b4

- (-- + -- + + .... ))

24 24 3 3

bl b2 4 b3 4 b4

( +

6 6 3 3

) == 0
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Solve[ {%, %%, %%%, %%%%}, {bl,b2,b3,b4}]

2 3

96 + 80 Cn + i0 Cn - 5 Cn

{ {bl ->

420

4

- Cn

2 3 4

96 - 80 Cn + I0 Cn + 5 Cn - Cn

b2 ->

420

2 3 4

24 + 50 Cn + 35 Cn + I0 Cn + Cn

b3 ->

1680

2 3 4

24 - 50 Cn + 35 Cn - 10 Cn + Cn

b4 -> } }

1680

Clean up the expressions for bl to b4 and solve for bO from the constraint.

t=_[[l]];

bl /. t[[l]];

bl=%

2 3 4

96 + 80 Cn + I0 Cn - 5 Cn - Cn

b2 /. t[[2]];

b2=%

420

2 3 4

+ 5 Cn - Cn96 - 80 Cn + i0 Cn

b3 /. t[[3]];

420

21



b3=%

2 3 4

24 + 50 Cn + 35 Cn + 10 Cn + Cn

1680

b4 /. t[[4]];

b4=%

2 3 4

24 - 50 Cn + 35 Cn - i0 Cn + Cn

1680

b0=Factor [Simplify [l-bl-b2-b3-b4 ]]

(-4 + Cn) (-3 + Cn) (3 + Cn) (4 + Cn)

28O

bl=Factor [bl ]

-((-4 + Cn) (2 + Cn) (3 + Cn) (4 + Cn))

Bn_

420

b2=Factor [b2 ]

-((-4 + Cn) (-3 + Cn) (-2 + Cn) (4 + Cn))

420

b3=Factor [b3 ]

(I + Cn) (2 + Cn) (3 + Cn) (4 + Cn)

1680

b4=Factor [b4 ]

(-4 + Cn) (-3 + Cn) (-2 + Cn) (-i + Cn)

1680
/

Use these values of b0 - b4 to form the 5-space-point/2-time-level stencil

shown in eq (13). This is a direct extension of the

3-space-point/2-time-level formula shown in eq (7).
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